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SHORT COMMUNICATION 
STABILITY OF FLOW OVER A ROTATING DISK 

A. Z. SZERI AND A. GIRON 

Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, P A  f 5261, U.S.A. 

SUMMARY 
The perturbation equations which characterize the stability of flow over a rotating infinite disk are derived via 
strict order of magnitude analysis. These equations contain viscous terms not considered by Stuart,' 
curvature and Coriolis terms not considered by Brown? and axial velocity terms not considered by 
Kobayashi et d3  The strategy for reducing the problem to an algebraic system is Galerkin's method with B- 
spline discretization. In comparison with the Poiseuille flow solutions of Orszag? the method is shown to 
perform well without placing undue demands on computing capability. Critical values of Reynolds number, 
wave length, vortex orientation and number of spiral vortices calculated by the present method compare 
favourably with experimental data of Kobayashi et al. 
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INTRODUCTION 

Stability of the laminar flow which is due to the rotation of an infinite disk has been investigated by 
several researchers over the past forty years. Stuart' examined stability at infinite Reynolds 
number, considering the velocity component in the direction of wave propagation to be 
approximately two dimensional. He found the critical profile to possess an inflection point at the 
position of vanishing velocity. Stuart's calculations gave good agreement with experimental data 
on the direction of wave propagation but overestimated the number of vortices. He then concluded 
that viscosity must have a considerable influence on the wave number. Brown' extended Stuart's 
analysis by considering stability at finite Reynolds number. He, nevertheless, retained the 
assumption of parallel basic flow. The critical Reynolds number for instability to infinitesimal 
disturbances obtained by Brown is Re, = 233. The Reynolds number is defined as Re = am@, 
where a is the radial distance from the axis of rotation and 6 = 1.271 ( v / o ) ' / ~  is the displacement 
thickness, The basic flow equations contain curvature and Coriolis terms in the analysis of 
Kobayashi et aL3, but the axial velocity component as well as the in-plane variation of the velocity 
are neglected. The analysis retains only terms of order Re- ' and larger. Kobayashi calculated 332 
for the critical Reynolds number. This value together with 0.465 for critical wavelength yields 
n 2 23 for the number of vortices. Experimentally Kobayashi et al. found Re, = 377 at instability. 
This latter value of Re, gives n r 26, which agrees with the lower end of the range 26-33 (n = 26 was 
measured with a hot-wire probe and n = 33 was estimated visually). 

The stability equations of Malik et aL5 account for both Coriolis and curvature effects to order 
Re- '. Examining stability to perturbations that are periodic in both radial and azimuthal 

027 1-209 1/84/100989-08$01 .OO 
0 1984 by John Wiley & Sons, Ltd. 

Received 8 March 1983 
Revised 10 October 1983 



990 SHORT COMMUNICATION 

directions and time and using the Chebyshev polynomial expansion of Orszag; they find Re, = 
364-78 and a spiral angle E = 11.2". Malik et aZ. map the semi-infinite domain 0 < z < co into a 
finite interval, prior to solution of the equations. The ambiguity associated with the positioning of 
the boundary at infinity (value of k in our analysis) is avoided in this manner but, at the same time, 
some insight into both the underlying fluid mechanics and the structure of the equations is lost. 

The present analysis follows the work of Kobayashi et a1.,3 but differs from it in two important 
respects. We show that the effect of the axial velocity component on flow conditions at criticality is 
not negligible. We also recognize the variation of the basic flow velocity along planes parallel to the 
disk. The analysis yields results which compare very favourably with the experimental data of 
Kobayashi. For the critical values of Reynolds number, wavelength, direction of wave propagation 
and number of vortices we calculate 359.79,0.486, 14" and 26, respectively. The corresponding 
experimental values of Kobayashi et aL3 are 377~10,0~465,13"-15" and 26-33. The scattering in 
the measured value of the angle E seems to be due to the fact that the various measurements were 
made at different speeds; the lower value of E = 13" representing experiments performed at lower 
speeds. There is also a range for the experimentally observed value of n. Apparently the spiral 
vortices branch off and the number n of the vortices tends to increase radially. There is also a 
bifurcation phenomenon of the vortices with increasing Reynolds n ~ m b e r . ~  

The strategy employed here for numerical solution of the stability equations is Galerkin's 
method with B-spline discretization. The method is simple to use when employing the spline 
subroutine package of de Boor.6 It is also very accurate, and is readily applicable to stability 
problems governed by partial differential equations. 

THEORETICAL 

A disk of infinite radius is located at X3 = 0 in the cylindrical polar co-ordinate system {X', X2, X3}. 
The velocity distribution of the flow in the half space X3 > 0, induced by rotation S2 of the disk, is 

defined by the Karman p r ~ b l e m . ~  The physical components of the velocity of this basic flow 
relative to the {X', X2, X3}  co-ordinate system are denoted by (U,, V,, W,}. 

Following Stuart,' we define another orthogonal curvilinear co-ordinate system, the origin of 
which is located on the disk at 2' = a, some X2, and which is given by the transformation: 

1 sinE+(X2+SZt)cos& 

x3 = 2 3  t 
We look for stability to perturbations which are periodic in the x1 direction and time, are 
independent of x2 and have amplitudes that are functions of x3 alone. Let {v;p} represent the 
perturbation, then 

{v(x, t); p(x, t ) }  = {v(x3); p ( ~ ~ ) } e ~ ( ~ ~ ' - ~ ~ )  

The linearized equations that govern the distribution of (v; p} are 

- ilv + V-gradv + v.gradV+ 2&2 x v = -grad (3) 

div v = 0 (4) 
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The pressure p and the velocity component u are eliminated from equation (3) by cross- 
differentiation and by substitution from equation (4)’ respectively. 

The various dimensionless quantities employed have the definition: 

{ x i }  = a{x ,y ,61z ) ; {Ux ,  V,, W,} = vo{ox’q,61~} 

In (9, and elsewhere, 6 is the displacement thickness of the boundary layer, V, = aR is the 
characteristic velocity of the problem and hl is the Lame coefficient and { U,, V,,, Wz> are the 
physical components of the basic flow velocity relative to {xi}. 

The boundary conditions on the perturbations are 

u=u=w=O, at z=O 

u=u=w=O, at z+co 

Terms of order Re-’ or larger are retained whereas others are neglected in the analysis. 
Boundary condition (6b) suggests the introduction of a normalized co-ordinate 

so that the boundary conditions now assume the form: 

dw u = w = - -  -0; (=O 
dl: 

dw u = w = - = o  [ = 1  a- ’ 
where we took (5) into account. 

Transformation of equations (3) and (4) yields 

dY 
d5 

d2w - a2uX i d2w ) ac2 w +  6Re -(clc4 
( U ,  - c) ___  &J -- __ - - 

( d i 2  

+ 51 {( Z 2 c o s  E u + [21/,cos e - (u, + c)  sin E - 21- 

i d2w dV, dw - sin e + ccos 6)- + --sin&- - 02uxcos e w  
U dc2 a5 d5 
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In equation (8) we have also put 

NUMERICAL 

We seek solutions of equation (8) in the weak form 
N 

i =  1 
U ( Z )  = 1 uiBj(z) 

Here the Bi(z), 1 Q i Q N are cubic B-splines defined over the partition 

n:o = z 1  < z2 <. * .  < Z l + l  = 1 (10) 

with uniform smoothness vi = v = 3,2 < i Q 1 on the interior breakpoints, and a knot sequence 
{ti};=+: given by 

z1 = t ,  = t2 = t 3  = t'$ 

z2 = t 5  

z l  = t N  

z l + l  = t N + l  = t N + 2 = t N + 3 =  t N + 4  

Expansions (9) can be forced to satisfy boundary conditions (7) in the strong form. This yields 

Approximations (12) are substituted into equation (8), together with spline expansions for the basic 
flow. 

{ U x ,  V,, W,} is available in tabulated form' Nevertheless we re-solved the Karman problem and 
obtained the basic flow via Hammings modified predictor-corrector method from an initial value 
problem. The spline fit was then performed with 30 Q N Q 75, the number of splines depending on 
the conditions of the problem. 

Applying (12), and Galerkin's method, differential equations (8a) and (8b) are replaced by the 
equivalent algebraic system 

( (AR + iAZ) - c(BR + iBZ)I = 0 (13) 

for real matrices AR, AI, BR and BI. 
The basic flow is stable if no eigenvalue exists with Im(c) > 0. It is marginally or neutrally stable if 

there exists one eigenvalue with Im(c) = 0 and for all other eigenvalues Im(c) < 0. It is unstable if at 
least one eigenvalue exists with Im(c) > 0. 

To investigate the accuracy of Galerkin's method with B-splines for stability calculations, we 
performed numerical studies of plane Poiseuille flow. The choice for selecting this flow is obvious. 
Our equations are easily reducible to the Orr-Sommerfeld equation (13) for pressure flow between 
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Figure 1.  Plane Poiseuille flow (Re = 20,000, u = 2.0;-, present work; Re@,) = 0.23752649, Orszag4) 

Figure 2. 



994 SHORT COMMUNICATION 

- 
- 

I I I I I I I I I I - 

parallel flat plates, and the stability of this flow has been studied extensively. Grosch and Salwen’ 
used expansions in the eigenfunctions of the operator (d’/d[’ - 0’) and at Re = 20,000 and (r = 2.0 
calculated the first eigenvalue as c1 = 0.237413 + 0*002681i, using expansions involving up 50 
symmetric eigenmodes. Orszag4 employed Chebyshev polynomial expansion and obtained c1 = 
023752649 + 0.00373967i on a CDC 6600 computer (15 significant digits in single precision). To 
date Orszag’s calculations have the best accuracy, but the method is tiresome to apply for more 
complicated equations, and it requires high order machine capabilities. Furthermore, its extension 
to problems governed by partial differential equations is not obvious. Our result for Re = 20,000 
and o = 2.0 at N = 70 is c1 = 0-237394 + 0.00373133i, obtained on a PDP 10 (8 significant digits in 
single precision). Figures 1 and 2 compare the real and the imaginary part, respectively, of the first 
eigenvalue as a function of the number of splines, with the value given by Orszag. Our result of 
Re, = 11,537.09 at N = 70 is in error only by - 0.06 per cent, relative to the value calculated by 
O r ~ z a g . ~  

As a second step in this study of the accuracy of the present method we examined stability of flow 
over a rotating disk when both curvature and Coriolis effects are neglected. To calculate stability of 
this flow, Brown’ solved a boundary value problem by matching the velocity of inner to outer 
layer. Kobayashi et aL3 recalculated this problem, using a predictor-corrector routine in shooting 
from ‘infinity’, designated here z,, to the disk. It is crucial in these calculations to arrive at an 
adequate positioning of ‘infinity’. As k increases, the magnitude of the critical Reynolds number 
becomes asymptotic. According to Figure 3 the effect of k greatly diminishes for k > 10. In all 
subsequent calculations we used k = 10.7. We approach Re, from below, but seem to converge to a 
value somewhat higher (242.84) than predicted either by Brown (233) or by Kobayshi (238). It is 
difficult to make detailed comparison because neither of the above referenced authors provides 
sufficient details of their calculations. 
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Figure 3. Flow over rotating disk, Orr-Sommerfeld equation (14). (-, present work; Re, = 238, Kobayashi et aL3) 
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DISCUSSION AND RESULTS 

If in equation (8) we put k -+ co, the terms containing the axial velocity W, and its derivatives will 
vanish. To reduce our equation (8) to the equations used by Kobayashi et d3, we in addition must 
disregard variations of U,, and V, along [ = constant planes. 

We have re-solved Kobayashi's model. The critical Reynolds number Re, varies with the 
number of splines N .  Convergence is from below with increasing N ,  as appropriate, but 
convergence is to a value (335.76) somewhat higher than the Re, = 332 calculated by Kobayashi. 
The difference amounts to 1.12 per cent. This is almost two orders of magnitude higher than the 
discrepancy we have with Orszag's result for plane Poiseuille flow. We are reluctant to accept that 
the present calculations are this much off the exact value. Rigorous comparison with the calculated 
data of Kobayashi is again difficult owing to lack of sufficient information. 

We have indicated in Figure 3 the effect ofimposing the far away boundary conditions at z ,  = k 
for varying k .  There we concluded that the effect of k becomes negligible for k =- 10.7. The solution 
of the Karman problem also shows that at z ( o / v ) ' ' ~  = 13.6, which corresponds to k = 10.7, F = 
3 x lo-', G = 5.3 x low4 and H = - 0.88565. These values are to be contrasted with the 
theoretical boundary conditions at infinity of F = G = 0.0 and H = - 0.886. 

To find the critical vortex angle E, equation (8) was used to plot stability diagrams at various 
constant values of E.  The minimum Reynolds number for a given E was estimated, and plotted 
against E; this Figure suggests E 14" for critical vortex angle. 

Stability diagrams were calculated based on Brown's model, Kobayashi's model, and the present 
model, equation (8). The results are displayed in Figure 4. 

Considering that Re = 1.271 Ri'2, where RE = a2m/v, and that the number of vortices is given by 
n = C T R ~ ' ~  sin ~/1.271, the present model yield at criticality 

RE = 8-0128 x lo4 
E Z  14" 
n z 26 
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Figure 4. Stability diagrams for flow over finite, rotating disk. (- -, Brown's model, equation (14); - - - -. Kobayashi's model, 
equation (15); -, present model, equation (12)) 
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These values are to be contrasted with the experimental data of Kobayashi et aL3 of R E =  
8.8 x lo4, E = 13”-15” and n = 26-33. 
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